Acids, Bases, Salts and Neutralisation [S]

		2 3
1.	Acids a	re used in many day-to-day applications.
	a.	Define the term <i>acid</i> in terms of pH: [2]
	b.	Describe how you could use phenolphthalein to distinguish an acid from an alkali: [2]
	C.	When universal indicator is added to citric acid solution it goes orange, but when added to hydrochloric acid solution it goes red. State and explain which is the stronger acid: [2]
	d.	Dilute hydrochloric acid is the active ingredient in many limescale (calcium carbonate) removers. Write a word equation to represent the reaction that would occur: [2]
	e.	Write a balanced equation, with state symbols, for the reaction in part d. [3]
	f.	Explain why dilute sulphuric acid would not be an adequate acid to remove limescale from the inside of a water pipe: [2]

2.	Bronsted-Lowry theory describes the actions of acids, bases and alkalis in terms of				
	hydrogen ions.				
	a.	Explain, using an equation, how nitric acid behaves as an acid: [2]			
	b.	Write a balanced equation, with state symbols, to represent the reaction			
		between zinc and nitric acid: [3]			
	C.	Explain, using an equation, how magnesium oxide behaves as a base: [2]			
	d.	State and explain the colour of blue litmus paper after dipping into: i. Hydrogen chloride dissolved in water [2]			
		ii. Hydrogen chloride dissolved in methylbenzene [2]			
	e.	Derive an ionic equation for the neutralisation of hydrochloric acid by copper(II) carbonate: [4]			

- 3. A student wishes to find the concentration of 25cm³ of an unlabelled solution of hydrochloric acid using a 0.2M solution of potassium hydroxide.
 - a. Write a balanced equation, with state symbols, for the reaction betweenhydrochloric acid and potassium hydroxide: [3]
 - b. Write an ionic equation for this reaction: [3]
 - c. Four titrations were carried out.
 - i. Suggest a suitable indicator and colour change: [3]

ii. Fill out the table: [4]

	Rough	1	2	3
Initial (cm ³)	0.15	0.30	0.20	2.25
Final (cm ³)	35.10	29.70	29.90	31.55
Titre (cm³)				

iii. Calculate the average titre using suitable values: [2]

iv. Calculate the concentration of the hydrochloric acid solution: [3]

Acids, Bases, Salts and Neutralisation [S]

- 1. Acids are used in many day-to-day applications.
 - a. Define the term acid in terms of pH: [2]a solution [1] with pH less than 7 [1]
 - b. Describe how you could use phenolphthalein to distinguish an acid from an alkali: [2]
 goes colourless in acid [1]
 goes pink in alkali [1]
 - c. When universal indicator is added to citric acid solution it goes orange, but when added to hydrochloric acid solution it goes red. State and explain which is the stronger acid: [2]
 orange = pH 3-5 and red = pH 0-2 [1]
 so hydrochloric acid is stronger [1]
 - d. Dilute hydrochloric acid is the active ingredient in many limescale (calcium carbonate) removers. Write a word equation to represent the reaction that would occur: [2]
 hydrochloric acid + calcium carbonate → calcium chloride + water + carbon dioxide
 [1] for calcium chloride, [1] for water + carbon dioxide
 - e. Write a balanced equation, with state symbols, for the reaction in part d. [3]
 2HCl(aq) + CaCO₃(s) → CaCl₂(aq) + H₂O(l) + CO₂(g)
 [formulae, balance, state symbols]
 - f. Explain why dilute sulphuric acid would not be an adequate acid to remove limescale from the inside of a water pipe: [2]

 The CaSO₄ formed is not soluble [1]

So it will not be washed away [1]

- Bronsted-Lowry theory describes the actions of acids, bases and alkalis in terms of hydrogen ions.
 - a. Explain, using an equation, how nitric acid behaves as an acid: [2]
 it donates H⁺ ions to a solution [1]

 $HNO_3(aq) \rightarrow H^{\dagger}(aq) + NO_3(aq)$ [1, state symbols optional]

- -

b. Write a balanced equation, with state symbols, to represent the reaction

 $Zn(s) + 2HNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + H_2(g)$ [formulae, balance, state symbols]

c. Explain, using an equation, how magnesium oxide behaves as a base: [2]

the oxide ion accepts H⁺ [1]

between zinc and nitric acid: [3]

$$O^{2-}(s) + 2H^{+}(aq) \rightarrow H_2O(I)$$

- d. State and explain the colour of blue litmus paper after dipping into:
 - i. Hydrogen chloride dissolved in water [2]

red [1]

HCl dissociates to give H⁺ [1]

ii. Hydrogen chloride dissolved in methylbenzene [2]

blue [1]

HCl does not dissociate, so no H⁺ [1]

e. Derive an ionic equation for the neutralisation of hydrochloric acid by copper(II)

carbonate: [4]

 $2HCl(aq) + CuCO_3(s) \rightarrow CuCl_2(aq) + H_2O(l) + CO_2(g)$ [formulae, balance]

Removal of Cl⁻ and Cu²⁺ as they are the same on both sides [1]

$$2H^{+}(aq) + CO_{3}^{2-}(s) \rightarrow H_{2}O(l) + CO_{2}(g)$$
 [1]

- 3. A student wishes to find the concentration of 25cm³ of an unlabelled solution of hydrochloric acid using a 0.2M solution of potassium hydroxide.
 - a. Write a balanced equation, with state symbols, for the reaction between hydrochloric acid and potassium hydroxide: [3]

$$HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$$
 [formulae, balance, state symbols]

b. Write an ionic equation for this reaction: [3]

$$H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$$
 [formulae, state symbols, charges]

- c. Four titrations were carried out.
 - i. Suggest a suitable indicator and colour change: [3]
 EITHER phenolphthalein [1] (colourless [1] to pink [1]) OR methyl orange
 [1] (red [1] to yellow [1])

ii. Fill out the table: [4] (each must be to nearest 0.05cm³)

	Rough	1	2	3
Initial (cm ³)	0.15	0.30	0.20	2.25
Final (cm ³)	35.10	29.70	29.90	31.55
Titre (cm³)	34.90 [1]	29.40cm ³	29.70cm ³	29.30cm ³

iii. Calculate the average titre using suitable values: [2]

iv. Calculate the concentration of the hydrochloric acid solution: [3]