Acids, Bases, Salts and Neutralisation [S]

1. Acids are used in many day-to-day applications.
a. Define the term acid in terms of pH : [2]
b. Describe how you could use phenolphthalein to distinguish an acid from an alkali: [2]
c. When universal indicator is added to citric acid solution it goes orange, but when added to hydrochloric acid solution it goes red. State and explain which is the stronger acid: [2]
d. Dilute hydrochloric acid is the active ingredient in many limescale (calcium carbonate) removers. Write a word equation to represent the reaction that would occur: [2]
e. Write a balanced equation, with state symbols, for the reaction in part d. [3]
f. Explain why dilute sulphuric acid would not be an adequate acid to remove limescale from the inside of a water pipe: [2]
2. Bronsted-Lowry theory describes the actions of acids, bases and alkalis in terms of hydrogen ions.
a. Explain, using an equation, how nitric acid behaves as an acid: [2]
b. Write a balanced equation, with state symbols, to represent the reaction between zinc and nitric acid: [3]
c. Explain, using an equation, how magnesium oxide behaves as a base: [2]
d. State and explain the colour of blue litmus paper after dipping into:
i. Hydrogen chloride dissolved in water [2]
ii. Hydrogen chloride dissolved in methylbenzene [2]
e. Derive an ionic equation for the neutralisation of hydrochloric acid by copper(II) carbonate: [4]
3. A student wishes to find the concentration of $25 \mathrm{~cm}^{3}$ of an unlabelled solution of hydrochloric acid using a 0.2 M solution of potassium hydroxide.
a. Write a balanced equation, with state symbols, for the reaction between hydrochloric acid and potassium hydroxide: [3]
b. Write an ionic equation for this reaction: [3]
c. Four titrations were carried out.
i. Suggest a suitable indicator and colour change: [3]
ii. Fill out the table: [4]

	Rough	1	2	3
Initial $\left(\mathrm{cm}^{3}\right)$	0.15	0.30	0.20	2.25
Final $\left(\mathrm{cm}^{3}\right)$	35.10	29.70	29.90	31.55
Titre $\left(\mathrm{cm}^{3}\right)$				

iii. Calculate the average titre using suitable values: [2]
iv. Calculate the concentration of the hydrochloric acid solution: [3]

Acids, Bases, Salts and Neutralisation [S]

1. Acids are used in many day-to-day applications.
a. Define the term acid in terms of pH : [2]
a solution [1] with pH less than 7 [1]
b. Describe how you could use phenolphthalein to distinguish an acid from an alkali: [2]
goes colourless in acid [1]
goes pink in alkali [1]
c. When universal indicator is added to citric acid solution it goes orange, but when added to hydrochloric acid solution it goes red. State and explain which is the stronger acid: [2] orange $=\mathrm{pH} 3-5$ and red $=\mathrm{pH} 0-2$ [1] so hydrochloric acid is stronger [1]
d. Dilute hydrochloric acid is the active ingredient in many limescale (calcium carbonate) removers. Write a word equation to represent the reaction that would occur: [2] hydrochloric acid + calcium carbonate \rightarrow calcium chloride + water + carbon dioxide [1] for calcium chloride, [1] for water + carbon dioxide
e. Write a balanced equation, with state symbols, for the reaction in part d. [3]
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
[formulae, balance, state symbols]
f. Explain why dilute sulphuric acid would not be an adequate acid to remove limescale from the inside of a water pipe: [2]

The CaSO_{4} formed is not soluble [1]
So it will not be washed away [1]
2. Bronsted-Lowry theory describes the actions of acids, bases and alkalis in terms of hydrogen ions.
a. Explain, using an equation, how nitric acid behaves as an acid: [2]
it donates H^{+}ions to a solution [1]
$\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$ [1, state symbols optional]
b. Write a balanced equation, with state symbols, to represent the reaction between zinc and nitric acid: [3]
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ [formulae, balance, state symbols]
c. Explain, using an equation, how magnesium oxide behaves as a base: [2] the oxide ion accepts H^{+}[1]
$\mathrm{O}^{2-}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
d. State and explain the colour of blue litmus paper after dipping into:
i. Hydrogen chloride dissolved in water [2]
red [1]
HCl dissociates to give H^{+}[1]
ii. Hydrogen chloride dissolved in methylbenzene [2]
blue [1]
HCl does not dissociate, so no H^{+}[1]
e. Derive an ionic equation for the neutralisation of hydrochloric acid by copper(II)
carbonate: [4]
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CuCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$ [formulae, balance]
Removal of Cl^{-}and Cu^{2+} as they are the same on both sides [1]
$2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \quad[1]$
3. A student wishes to find the concentration of $25 \mathrm{~cm}^{3}$ of an unlabelled solution of hydrochloric acid using a 0.2 M solution of potassium hydroxide.
a. Write a balanced equation, with state symbols, for the reaction between hydrochloric acid and potassium hydroxide: [3]
$\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ [formulae, balance, state symbols]
b. Write an ionic equation for this reaction: [3]
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ [formulae, state symbols, charges]
c. Four titrations were carried out.
i. Suggest a suitable indicator and colour change: [3]

EITHER phenolphthalein [1] (colourless [1] to pink [1]) OR methyl orange
[1] (red [1] to yellow [1])
ii. Fill out the table: [4] (each must be to nearest $0.05 \mathrm{~cm}^{3}$)

	Rough	1	2	3
Initial $\left(\mathrm{cm}^{3}\right)$	0.15	0.30	0.20	2.25
Final $\left(\mathrm{cm}^{3}\right)$	35.10	29.70	29.90	31.55
Titre $\left(\mathrm{cm}^{3}\right)$	$\mathbf{3 4 . 9 0}[1]$	$\mathbf{2 9 . 4 0} \mathbf{c m}^{\mathbf{3}}$	$\mathbf{2 9 . 7 0} \mathbf{c m}^{\mathbf{3}}$	$\mathbf{2 9 . 3 0} \mathbf{c m}^{\mathbf{3}}$

iii. Calculate the average titre using suitable values: [2]
use values 1 and 3 (within $0.2 \mathrm{~cm}^{3}$ of each other) [1]
average $=29.35 \mathrm{~cm}^{3}$ (must be to $0.05 \mathrm{~cm}^{3}$) [1]
iv. Calculate the concentration of the hydrochloric acid solution: [3]

Moles $\mathrm{KOH}=$ conc * vol $=0.2$ * $(29.35 / 1000)=0.00587 \mathrm{~mol}[1]$
Moles $\mathrm{HCl}=0.00587 \mathrm{~mol}$ (1:1 ratio) [1]
Conc $\mathrm{HCl}=$ mols $/ \mathrm{vol}=0.00587 /(25 / 1000)=0.235 \mathrm{~mol} / \mathrm{dm}^{3}[1]$ (3sfonly)

